张宏江:知名计算机科学家眼中的AI投资机会与陷阱
2018年11月8日“智能+”是源码的三大核心聚焦方向之一,源码在这一领域建立系统的投资方法论、前瞻性地提前布局,投出了今日头条这样运用人工智能技术颠覆性定义信息与内容的明星项目。
源码资本的投资合伙人张宏江博士曾为前微软亚太研发集团首席技术官、微软亚洲工程院院长、金山软件CEO,是世界多媒体研究领域一流的科学家,是计算机视频检索研究领域的“开山鼻祖”,获得过IEEE(美国电气和电子工程协会)和ACM(美国计算机协会)两大计算机专业协会颁发的重大奖项,是首位获此殊荣的华人科学家。在2018年全球计算机科学与电子领域顶级科学家排名H-index中,张宏江博士位列中国大陆第一,全球Top29。
AI领域近年来毫无疑问为投资领域最引人关注的热点之一,也引发了无数在道德、伦理方面的讨论,信息庞杂让投资人难以甄别。以下为张宏江博士对于这一波AI浪潮带来的影响的思考,以及在投资AI领域有什么样的机会以及陷阱。
AI的发展与影响
AI的应用与未来:辅助人,代替人,超越人;
机器将造成未来社会出现90%的闲人,但机器难以替代资本家、艺术家和手艺人;
机器在感知上超越了人类,但在认知上还要5-10年。
今天的AI、今天的机器学习不光是能够辅助人,而且很大程度上会代替人,未来还会在很大程度上超过我们。也许这是我们今天不愿意接受的。
未来AI会超过我们。到底怎么样超过?其实我们想象一下人工智能今天确实能够做很多人类能够做的事情。原因是为什么?人类可以像AlphaGo一样一晚上下一百万盘棋吗?能够像特斯特收上百辆的车同时收集数据并进行同时学习吗?这做不到。同样今天人类不可能对遍布于全国各个火车站,各个机场的数据同时进行处理,也就是说规模你也比不上。
人工智能会代替人、超越人是时间问题。不光是这样,机器学习在一些场景做的比人还好,因为人通过观察、通过思考判断出来的东西,人工智能通过学习很大程度上比你做得快。AlphaGo已经完全展示出了,人们在围棋这一点上是已经被人工智能打败了。
投资决策、政策、规划、战争沙盘推演这些很大程度都是靠经验的。今天从AlphaGo上看到的,人工智能在这些场景里都会超过人类,这是因为机器本身的自我学习的能力已经非常强大。像开车、滑雪、画画、拉提琴这些不可能通过看手册就能学会的事情,人工智能也已经超过了人类。其实我们自以为很了不起的东西,人工智能看的比我们要透彻。
前一段AlphaGo隐姓埋名跟人类下棋,世界排名第一名的柯洁下输了后感慨地说人类三千年的围棋文化只是接触了围棋的皮毛。我们以前下围棋,人类的思考实际上只是看到一个本地的最优解,不可能翻山越岭去看,但是AlphaGo可以看到山外还有山。是因为它的数据处理能力比我们强,所以它学到了这一点。人类以后再也不可能赢AlphaGo了。这就是残酷的现实。
举一个微软研究院的例子。在这个例子里,机器看到Stop Sign标志,会描述出这是在一个城市边上有这样一个标志,有红色,立柱,与交通相关等等标签。这个系统希望能看图讲故事,不是看图识字,是识图讲故事。
据说在AI的浪潮下最安全是考古学家。可是这个社会上考古学家也不需要太多,工资也不会太高。男怕入错行,女怕嫁错郎。随着这些的变化,未来哪些工作会被AI取代,社会将是什么样的?
全球化是在全球范围内寻找最廉价完成某一项制造的过程,于是全球化导致了两级分化,导致了跨国企业效率不断提高,也导致了包括美国在内发达国家蓝领工人的失业。AI是否会加剧这个趋势?
未来可能会有两种人,一种叫神人,一种叫闲人。问题是90%以上的是闲人,这怎么办?其实去年瑞士的国家有一个议员提出了,不管工作不工作每个人先发三千法郎,工作再拿另外的钱。瑞士人还是比较冷静,全民公投没有通过。未来可能只有三种人能够对抗AI,资本家是没有问题的,未来仍需要资本运作。另外就是艺术家和手艺人,这类技能机器暂时不能学过来的。当然大部分人很难做到这三种人。
人工智能的局限在哪儿?强AI(GAI)依然道路漫长。机器在感知上已经超过了人,但是认知可能还有5-10年甚至更长的路要走。
深度学习的方式,有没有问题?其实有一个很大的问题,事实上是人们给自己创造出来的一个问题。人工智能或者机器智能是机器通过观察体验来学习,机器本身可以对自己进行编程,程序员不再需要写命令解决问题,而程序会根据示例数据和期望输出生成自己的算法。
今天在很多领域已经往这些目标行进,第一个案例,比如Nvidia无人驾驶车,不是靠程序员指令走的,完全靠观察人的行为,观察人们开车的行为来确定自己驾车方法。第二个案例,在纽约一家医院开发了一套系统,叫做Deep Patient,医院只给了它70万个病例,然后这个系统从70万的病例中学习,通过数据发现规律,总结出了非常强的疾病预测能力,尤其患精神分裂症的预测能力远远超过了大夫。第三个案例,美国军方大量投入机器学习,为车辆和飞行器导航确定攻击目标,在大量数据中间挖掘出恐怖分子的一些信息,都已经远远超出了人们一开始的预期。深度学习已经具备了这样的能力,但是深度学习依然没有能够解释自己的行为。还是黑匣子。
人类历史上从来没有创造过这样一个机器,这个机器的行为和判断连人类都不能完全理解。今天我们创造了深度学习的机器不能判断和解释自己的行为,这就是今天我们感觉到不舒服的。人们反而问自己,我们自己作出了很多判断我们自己能够说清楚为什么做的吗?可是人类可以容忍自己的这种情况,但是不能容忍机器的这种情况。美国国防部就将机器学习的不可解释性定性为“关键的绊脚石”。
终级目标,机器和人到底有什么区别?
它比你来得快,比你大,某些能力比你还强。它和人类区别在哪儿?
求生本能,对于死亡的恐惧,这是机器没有的,这是定义出人和机器一个根本性的区别。人和动物的演化速度,一系列的求生本能,被打了会跑,避免疼痛,会食色,会有归属感。人类做坏事也是因为对死亡的恐惧,对欲望的驱动。机器本身目前为止因为它不惧怕死亡,所以也没有感情,没有感情是不是就不能说有智能呢?这是一个宗教问题,不是一个科学问题。
AI投资的机会与陷阱
在对AI投资的判断中,产业链包含:基础,技术,应用;
基础被巨头控制,技术层面能否出来一些公司依然存疑;
应用层要寻找能够大量产生数据的产业。
过去经验也告诉大家,每一波科技浪潮中会有一些平台性的公司。我们谈AI投资,到底投什么?就像我们谈PC的投资,谈互联网的投资我们是谈生态链。
在对AI投资的判断中,产业链包含基础、技术,应用。基础这个层面已经被巨头控制了,基础层有两大块:基本计算能力和数据。基本计算能力无论是谷歌还是微软,包括中国百度都已经把它作为SaaS服务提供出来了。技术这一块,没有数据能否成为一个平台?在SaaS这一块,不是通用的SaaS,也许在SaaS应用这一块能够出来一些公司?这也是一个非常大的问号。
应用层中,AI其实是AI+这个场景,它是一种生产力提高的工具,会让所有以前的应用变得更加有效,当然你要找比较容易突破的。显然钱多和数据多的行业是最早发挥功效的地方。所以我们要找这个产业是不是大量产生数据,是否有这个数据能够不断拓展,不断创造价值,从而使得我们能够在这一里面把原有的生态进行改变。
如果说上一波是互联网,这一波是AI。大家要注意AI跟互联网的区别。最简单的可以说,AI发展到一年多以后我们就发现实际上是智能+。AI技术驱动,更加从垂直开始。因为技术本身发展的太快了,而互联网是商业模式创新,是全新的应用,赢家通吃在AI那一块未必行得通。
根据这个观察可以看一下今天AI投资的情景,今天AI显然是有很多泡沫,最大的泡沫我觉得是在估值公司。你去你找一家公司谈,每一家公司都说我自己是AI公司。真正看这家公司是不是AI公司,更重要的是它要有数据。能够不断有数据,它能够不断抢占数据的高低,这是我们的核心。
今日头条这家公司,之所以能够站稳,在过去五年之间突然出现,有它一个根本的原因,那就是信息的获取这个大的需求。今日头条在人工智能开始使用的时候迅速占领高地,它第一个用搜索的方法做了新闻推荐,从而它本身这个系统就是一个很大的学习网络,使得今天能够不断的演化,推荐的能力不断增强,从而在这个基础上对核心的能力进行突破。我们完全可以预测未来的今日头条就是一个超级的智能系统,同样我们看到了它的数据量是如此之大,它已经远远超过了一开始的文字到今天走向图象,走向论坛,走向直播,它其实所具备是不断增加的数据。
最后,AI的投资。如果你记住我刚刚所说的话就是三个投资点,第一是“智能+”,所有公司都应该具备的一种能力,而这个能力是它核心竞争力。第二,AI产业,包括自主开发、咨询服务、人工智能即服务AI-aas。第三,要有数据和人才。
人才、数据是核心,投算法本身就是投人,我前面谈到深度学习的训练需要人对于这个算法的理解并且掌握的训练的技巧,懂算法还要懂应用的人才是非常有价值的。另外,数据实际上是AI公司最终的护城河。
最后一点,给大家一个信息,就是AI这个领域里面中国人才是非常多的。高盛的一个AI报告指出,在过去的五年里面发表的跟神经网络和机器学习相关的文章里面,中国人作者的数量已经超过了美国,而且还持续增长。在引用的文章里面中国作者的数量也超过了美国,而且还在持续增长。所以至少我们在这个是里面中国人不少,数量多了之后以后自然就有强人。在人才这一块中国不差。
另外,中国发生的数据如此的巨大。也就是说中国有人才、有数据。所以AI这一块一定是中国创新和投资的新希望。
文章选自新浪财经,2018年10月30日