张宏江:人工智能的支撑是大数据和云计算

2016年8月19日


张宏江,金山软件CEO, 执行董事,CCG常务理事。

编者语

由中国计算机学会(CCF)主办,雷锋网承办的《全球人工智能与机器人峰会》于8月12日在香格里拉酒店举办,亿欧作为媒体支持单位报道本次活动干货。下面是金山软件CEO,前微软亚洲工程院院长,多媒体技术专家张宏江的分享要点,他带来了云与智能结合相关的报告,以下是演讲要点:

 

  

  人工智能的进展很大程度归功于计算的进展,我们看到这些年互联网突飞猛进的发展,全球产生消费的数据,2013年2020年将增长10倍,年增长率40%。互联网突飞猛进的时候,尤其移动设备的突飞猛进,可以看到照片的数据增长是如此迅猛。


  每天人们都上传和分享的图片,图片已经超过了10几个亿,2014年我开始注意小米手机的数据,到2015年年初的时候,它的每日上传图片数据已经超过一亿张。前段时间马化腾谈到,今天微信一天在朋友圈里交换的图片是10亿,大家可能不会特别在乎10亿这个数字,但20年前,中国一年的胶卷消耗量是40亿,一年最多拍40亿张照片,今天也就是微信上四天的交换量。


  这从一个简单的量变带来的质变,尤其我们在做神经网络的时候,碰到的第一个问题,得到一个非常好的解决。我们再看一个具体情况,把这些数据简单做成数列图,这就需要2400核2.6G的CPU,需要200T的存储空间。如果把小米的用户已经存到小米云上的照片,5亿多张的话,就需要120万核,需要100P的存储空间,而今天中国的存量照片,这是2014年的数据,3000亿张的时候,需要的存储空间和计算量是多么的巨大。


  正是因为有了如此庞大数量的图片,使得我们以前认为以前做神经网络被认为不可能完成的训练任务今天相对容易的完成。2011年纽约时报报道的一个工作,就是让一个计算机自动识别出猫的脸,它用的数据基本上按我们以前AR里面谈的,就是一个蛮荒之力。16000个处理器做了1000万张照片,今天的数字对我们来说已经小菜一碟了。


  从学术角度来看,我认为过去这20多年人工智能的发展,特别是在人脸识别领域的20多年的进步,其实可以归结成是一个数据库的扩张,在90年代初的时候,做人脸的时候,所有学术时代用的数据库都是几百个人,因为数据库很小,你可以说它的识别率是95%到99%,但即使这样,机器人的识别能力依然非常低于人的识别能力,而且对光线要求非常高,而且一定要正面图象。


  当我们看到,随着数据的增加,再过十年,我们看到这些照片已经是上千近万张照片,这时候识别的能力有了进一步的提高,而且对于表情、光线等的要求就没那么严格了。再进入2000年以后,数据量爆炸,这时候互联网的普及,数量如此多,到了LFW这个数据积的时候,已经差不多5000人的数据积,从而使得识别率更进一步提高,到了95%以上,时候工业界加入进来,学术界真正的有开始突破的时候,它的训练数据已经找到了更多的训练。


  真正的人脸识别时代还是工业界的人认为这个问题可以开始实用了,工业界开始进入的时候,这时候的工业界数据量跟学术界的数据量完全不是一个数量级,Facebook和Deepface它已经到了4.4M张图,4030个人,每人800至1200张图;到了谷歌、FaceNet的时候,已经到了2亿张图像,800万人,参数已经超过了14000万。


  当训练数量开始增加的时候,对于同一个模型精度的增加是非常相关的。当然,当数据量比较小,增加一个数量级的时候,改善也比较小。只有呈数量级的增加,才能获得小数点一位数的增加。我们看算法也同样,当算法变得越来越精确的时候,你所需要的计算能力,也是一个快速的增加。可以看到,当计算的复杂度超过了十亿浮点的时候,可以看到检测精度的增加。


  真正的工业界以人脸识别为生的公司,最近几年的进展,我用了两个例子,商汤科技和依图,从他们那里拿到的数据基本上是中国人口的数据,7000多万张标准照片再加上亿张其他照片,人们用的深层网络已经超过30层,训练20块NVIDIA,今天的精度已经远远超过人类,今天你要做任何坏事,只要留下一张照片,基本上就插翅难逃了,这就是今天商业解决方案已经达到的精度。


  数据在我们日常工作中起的作用和研究中起的作用是以前完全不可以比拟的。大数据包括高质量数据的获取和分析,和它整个在应用中的解析已经越来越成为公司的标配,如果你作为一家体量大的公司,没有大数据的分析,或者没有办法获得大数据,或者是你没有把这些大数据转换成专家的话,其实你在你的行业里已经很难生存。


  当然这一切其实必须靠云来支撑,没有云我们也谈不上大数据,谈不上大数据的获取、处理和大数据的运营。这是为什么一系列的云公司,尤其大规模云公司越来越强调数据的存储和处理,金山已经早进入云存储和云数据分析,无论是原始数据图片还是视频,每天大量的产生者,然后大量存储到云里面,然后被云处理和解析,这需要大量资源才能真正地做到我刚才说到的数据的消费,像人脸识别这些我们20多年前梦想能解决的问题。


  今天看到的智能平台,无论消费者的智能平台还是工业智能设备,大部分今天能做到的智能本身非常非常少,它的智能是藏在后端云里面。同样大家在座的知道,人工智能现象同时发生在过去几个月的网红视频直播,为什么这些公司一夜之间能冒出来,是它后面的支持技术,做了很多年的采接、编解码等等都已经由视频云计算公司给它提供了,所以你做网红直播,只需要找网红,只需要搭一个网站写一个APP,后端所有事情由云来提供了。


  同样市场上对于云计算公司的看法也非常非常乐观,回顾过去30年,在互联网里成长最快的公司,我们用一个数据来衡量,哪些公司最快的时间达到100亿美金,显然互联网公司快。一家叫做Facebook,一家叫做谷歌,只有一家2B的公司在十年内销售额达到了100亿美金,就是亚马逊云,当一个2B的业务赶上2C业务的时候,你就知道,人们对于这个需求是多么地庞大,当然,我就不再具体多讲。实际上市场给出的反应也很清楚,当你快速地在云里面进行投资,快速地在云里面进行成长的股票,你可以看到,市场给予的回报是最好的。


  同样,对于在中国做人工智能的人来看,这个数字非常令人鼓舞,今天中国的互联网产值是美国的百分之几,我们想的是在今后几年,云计算产业的空间和增速是如此之快,这也是为什么金山在过去几年投入如此庞大的资源,使我们成为中国金山云计算的服务商,游戏云、视频云、智能硬件等等方面成为国内领军的企业。很重要的实际上市场的成长速度比我们想象的还要快。


  我的结论是说,当我们看到人工智能作为一个现象突飞猛进突破的时候,更应该注意到的是它后端的,不光是算法本身的突飞猛进,更重要的是支撑这个算法突飞猛进的大数据和云计算,所以我们看到的未来是前端一系列的智能设备,而它的大脑实际上在云里面,谢谢大家!


文章选自亿欧,2016年8月12日

关键词 理事观点